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Abstract 
 
Normally, a mechanical pumping system is equipped to monitor some of the important input and output signals 

which are set to the prescribed values. This paper addressed dealing with these signals to establish the database of in-
put-output relation by using a number of neural network models through learning algorithms. These signals encompass 
normal and abnormal running conditions. The abnormal running conditions were artificially generated. Meanwhile, for 
the purpose of setting up an on-line diagnosis network, the learning speed and accuracy of three kinds of networks, viz., 
the backpropagation (BPN), radial basis function (RBF) and adaptive linear (ADALINE) neural networks have been 
compared and assessed. The assessment criteria of the networks are compared with the correlation result matrix in 
terms of the neuron vectors. Both BPN and RBF are judged by the maximum vector based on the post-regression 
analysis, and the ADALINE is judged by the minimum vector based on the least mean square error analysis. By ignor-
ing the neural network training time, it has been shown that if the mechanical diagnosis system is tackled off-line, the 
RBF method is suggested. However, for on-line diagnosis, the BPN method is recommended. 

 
Keywords: Neural network; System diagnosis; Correlation analysis; Sensitivity analysis; Radial basis function method; Backpropaga-
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1. Introduction 

Mechanical system fault detection and diagnosis 
can be performed by using artificial neural network 
(ANN) based on the measurements of system pa-
rameters. There are two commonly used ANN meth-
ods: model-based and pattern recognition. The model-
based fault diagnosis (MBFD) technique has been 
applied to resolve the computational complexity prob-
lem in the neural network methodology (Parten et al., 
1991) [1]. Recently, the back-propagation neural net-
work (BPNN) was used as the backbone to determine 
if any abnormality existed in the etching process of 
the semiconductor manufacturing process by Chen et 

al., 2006 [2]. A new identification technique for 
monitoring the dynamic behavior of a structural sys-
tem subjected to earthquakes by combining a neural 
network and genetic algorithm has been considered 
by Chang, 2003 [3]. In the aspect of vibration signals 
or spectra by way of ANN, utilizing the abnormal 
vibration spectra of rotating machine test bench to 
diagnose the system performance in BPNN by Nam 
and Lee was done in 1992 [4]. The vibration signature 
recognition of rotating machine fault identification by 
using BPNN was addressed by Chow et al., 1993 [5]. 
Fault diagnosis in rotating machinery was performed 
by Priddy et al., 1993, who were also applying the 
MBFD technique by using the vibration mode meas-
urement data [6]. Medical imaging using ANN has 
been shown by Pattichis et al., 2001 to be promising 
[7]. The pattern recognition of the adaptive linear 
neural network (ADALINE) method has been ad-
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dressed and used to identify the alphabetical charac-
ters by Tzeng and Juang, 2002. [8] A similar ANN 
technique for person identification was presented by 
Zhang et al., 2004 [9]. The application of the ANN 
technique for image detection has also been addressed 
by Young et al., 2004, where they considered the 
target detection problem by mapping these image 
gradient vectors using linear transformations [10]. 
Therefore, it is worth exploring the ANN technique to 
check the parameter clustering image of pump sys-
tems for the purpose of diagnosis. Recently, the radial 
basis function (RBF) neural network has been exten-
sively applied in the areas of the output response 
analyses and fault diagnosis of analog systems 
(Cheng et al., 2004) [11]. The effectiveness of the 
RBF method has been compared with the other tech-
niques by Liang et al., 2001 and the RBF technique 
showed excellent performance. Singla et al., 2007 
have considered a new algorithm for RBF networks 
in which the concepts of direction-dependent scaling, 
shaping, and rotation of Gaussian basis functions 
have been introduced for maximal trend sensing with 
minimal parameter representations for input output 
approximation [12-13]. Hsu, 2005 applied both the 
neural network method and statistical regression 
method to identify the stock index appropriately [14]. 
Owing to these proper diagnosis results, one may be 
inspired to apply the algorithm combining ANN and 
regression for system diagnostics. 

ANN has been proven to be a viable technique ap-
plicable in classification problems such as speech 
recognition, medical diagnosis, handwriting recogni-
tion, image processing, and fault diagnosis. Neverthe-
less, to raise the operation efficiency and availability, 
it is important to develop a simple and acceptable 
conventional method to monitor and diagnose the 
operation performance of a mechanical pumping sys-
tem in a marine power plant. The easiest way is via 
examining the input and output model parameters of a 
mechanical system by using the integrated neural 
network pattern recognition technique. In this article, 
we have proposed a new diagnosis methodology for a 
mechanical system where minimal significant pa-
rameters were considered. For the diagnosis of the 
mechanical pumping systems onboard a modern mer-
chant ship using ANN, three feed-forward neural 
networks algorithms together with parameter identifi-
cation were proposed in this study. A motor-driven 
circulating pumping system has been selected as an 
example of the onboard marine engine system to 

monitor and diagnose its operation behaviors. Com-
parisons of the training time and the diagnosis results 
of the three ANN algorithms, namely, BPNN, RBF, 
and ADALINE that applied to the on-line and off-line 
diagnosis, are discussed. Also, sensitivity analysis is 
used to quantify and ascertain the most sensitive ob-
servable parameter by analyzing their signal-noise 
end with period. 
 

2. Diagnosis theory 
2.1 Correlation analysis for parameter identification 

The purpose of correlation analyses to all system 
parameters is to identify the relative significant and 
influential parameters for a normal or abnormal sys-
tem behavior. This can be accomplished by the identi-
fication of correlation coefficients. The correlation 
coefficient is a measure of the relation between two 
variables. Normally, the correlation coefficients are 
normalized and range from -1.00 to +1.00. The value 
-1.00 represents a perfect negative correlation, while a 
value +1.00 represents a perfect positive correlation. 
A value 0.00 represents a non-correlation between the 
two variables. The most widely used form of the cor-
relation coefficient is Pearson’s coefficient r , which 
gives the magnitude and direction of the two associ-
ated variables in an interval with ratio scale. Pear-
son’s coefficient r  is also referred to as the linear or 
product-moment correlation and is defined by: 
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where N  is the number of measurement pairs x  
and y . 

In addition to the correlation analyses of parameters, 
the fuzzy logic clustering reasoning and statistical 
box-plot of measurements for all prescribed running 
conditions of a mechanical system are conducted 
simultaneously to ascertain the effective and signifi-
cant parameters for the proposed exploration condi-
tions. The box-plot is a graphical method based on 
robust statistics to show the categorization of meas-
urement data population. Besides, data clustering can 
be used to classify the measurement data into differ-
ent groups by means of fuzzy c-means (FCM). 

The reason to adopt a box-plot is its ability to resist 
the presence of outliers of measurement data better 
than the classical statistics based on the normal distri-
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bution. The content in the box-plot consists simulta-
neously of the minimum and maximum of the meas-
urement data, the median values of the first 25%, 
50% and 75% measured time-series data. In addition, 
the outliers encompass either the measurement data 
larger than the median value of the 75% measured 
time-series data and the data less than the median 
value of the first 25% measured time-series data. 

FCM allows the measured data to be categorized 
into clusters by the clustering center-means vectors. 
This clustering method has been used frequently for 
pattern recognition. FCM is based on an iterative 
minimization procedure of the following dissimilarity 
(or distance) function (Jm) for a collection of N vec-
tors into C groups (or clusters):  
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where Jm is the distance function of mth iteration, m is 
any integer number greater than 1, uij is the value of 
the membership function of xi in the jth cluster, xi is 
the ith measured data, cj is the center of the jth cluster, 
and ji cx −  is the norm of ( )ji cx − . The fuzzy 
clustering is carried out through an iterative optimiza-
tion of the objective function given by Eq. (2) with 
the update membership function uij and the cluster 
centers cj defined as:  
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This iteration will stop when { } ε u-umax k
ij

1)(k
ij <+ , 

where ε  is a termination criterion whose value 
ranges between 0 and 1, whereas k is the index of 
iteration step. Normally, this procedure converges to a 
local minimum or a saddle point of mJ . 

As a summary, the FCM algorithm is composed of 
the following steps: 
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Step 3. Update )k(U  and )k(U 1+ , in which 

∑
=

−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−

−

=
C

k

m

ki

ji

ij

cx

cx
u

1

1
2

1
 

If { } ε<−+   1 )k()k( UU  then STOP; otherwise return 

to step 2. 
 

2.2 Neural network models and learning algo-
rithm 

An ANN is a set of interconnected groups of 
artificial neurons that are linked by a mathematical 
model for information processing. In most cases, 
ANN is an adaptive system that can change the 
system’s structure based on the external or internal 
information flowing through the network. In more 
practical terms, neural networks are non-linear 
statistical data modeling tools that can be used to 
establish complex relationships between inputs and 
outputs and find the patterns amongst data. There are 
numerous algorithms available for training neural 
network models. Most algorithms used for training 
ANN employ the gradient descent method. There are 
three major learning networks: supervised learning, 
unsupervised learning and reinforcement learning. 
Usually, any special type of neural network is 
accompanied by a special learning method. In this 
paper, two kinds of supervised learning neural net-
works, BPN and RBF, and one unsupervised learning 
neural network, ADALINE, are adopted to create the 
database of the normal and abnormal prescribed con-
ditions of a mechanical system based on measure-
ments.  

Furthermore, there are two kinds of BPN, the feed-
forward backpropagation neural networks (FBPN), 
and the cascade feed-forward backpropagation neural 
networks (CFBPN). Both FBPN and CFBPN are 
trained by backpropagation learning method. Nor-
mally, the backpropagation learning method is most 
useful for feed-forward networks. Both of them have 
multi-layer networks with a number of R inputs and T 
outputs. But the number of neurons in the hidden 
layer for FBPN and CFBPN is different.  

The two kinds of the BPNs are trained by the num-
ber of epochs to generate an individual neural net-
work. The Widrow-Hoff (or least mean square 
(LMS)) learning algorithm has been used for the 
training process and generation of the BPN models. 
With these models, the simulation results can be used 
to compare with the corresponding measurements to 
validate and select the most suitable model for de-
scribing the running behavior. Fig. 1 shows the de-
tailed architecture of FBPN, in which the sum of the 
weighted inputs and the input bias form the input in  
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the tan-sigmoid transfer function 1f  in the hidden 
layer. The range of the outputs of 1f  is from -1 to 
+1. The output value becomes the input of the linear 
transfer function (purelin) 2f , in the output layer. 
The output of 2f  can be any real number be-
tween −∞  and +∞ . 

Thus, summarizing the above-mentioned descrip-
tion, the mathematical form of the BPN learning algo-
rithm can be derived as follows: Denote p  to be an 
initial input measurement vector of the significant 
system parameters, 1−n

ja  to be the output of the jth 
neuron in the th)n( 1−  hidden layer and n

ja  to be 
the output of jth neuron in the thn  layer (or the out-
put layer). The relations for p , 1−n

ja  and n
ja  can be 

expressed as: 
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where ijw  and jθ  are the layer weight and the 
layer bias of jth neuron in the ith layer respectively. 
The tan-sigmoid function in the hidden layer is de-

fined by 
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whereas the linear function in the output layer has to 
attain the output value and is defined by  
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The ADALINE neural network possesses only the 
input and linear neuron layers in the architecture as 
shown in Fig. 2. The input of ADALINE comes from 
the clustering image of the measured data vectors in 
the state space of a system. ADALINE is trained 
adaptively by a number of epochs with the use of 
LMS to acquire the neurons with least mean square 
error and to generate the most suitable neural network 
model for representing the system behavior. Basically, 
the learning algorithm of ADALINE network can be 
expressed as: 
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where e  and b  represent the error vector and bias 
vector, respectively, and w  is the weight, p  is the 

   
 
Fig. 1. Network architecture of FBPN.                       Fig. 2. Network architecture of ADALINE. 
 
 

   
 
Fig. 3. Network architecture of RBF.                        Fig. 4. Diagnostic flow chart for mechanical system. 
 



128  T. M. Tsai and W. H. Wang / Journal of Mechanical Science and Technology 23 (2009) 124~135 
 

input vector, and α  is the learning rate. 
The RBF neural network also has multi-layers in its 

architecture, as shown in Fig. 3. The input layer and 
output linear layer have the same number of neurons 
as that of BPN. However, the transfer function used 
in the hidden layer is that of a Gaussian function. 
Owing to the usage of the Gaussian function, one can 
produce a significant nonzero response even when the 
input value is very small. Therefore, the RBF network 
is sometimes referred to as the localized field recep-
tive network (Hush, 1993) [15]. The number of S1 

neurons in the hidden layer increases as the input data 

increases progressively. In the radial basis layer of 
Fig.3, the input vector p of dimension R×1 and the 
input weighting matrix (S1×R) are combined to form 
the Euclidean distance dist , where dist is the 
Euclidean distance vector. The Euclidean distance 
between two points ix  and iy , where i=1,…, n in 
an n-dimensional space is defined by: 
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Fig. 5. Layout of experimental set up, 1: Pump Set, 2: Control Panel, 3: Labview Program, 4: Transducer unit, and 5: Air-in 
Control Valve. 
 

 

 
Fig. 6.Box-plots of system parameters for each system sampling condition. 
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The Euclidean distance dist  was combined with  
the input bias vector and substituted into the Gaussian 
transfer function to generate a significant non-zero 
response of the radial basis layer. Initially, both the 
input bias and the layer bias are random vectors. 
Through the step-by-step modifications of the weight-
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Fig. 7. Fuzzy-logic clustering of parameters by FCM for each system sampling condition. 
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(b) Vacuum vs. Flow rate distribution of Normal condition
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(c) Pressure vs. Flow rate distribution of Normal condition

Fig. 8. Clustering image of measured data pair in state space on normal condition of mechanical system. 
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(d) Vacuum vs. Pressure distribution of Air-in 1/2 condition
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Fig. 9. Clustering image of measured data pair in state space on Air-in 1/2 condition of mechanical system. 
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ing matrix and the bias vector by using the gradient 
descent optimization technique, the RBF learning 
algorithm can attain a well-trained neural network 
model. The function of the output linear layer in Fig. 
3 is to generate the value of output to be any value 
between −∞  and +∞  through the linear purelin 
function. 

 
2.3 Regression diagnostics 

By the ANN learning algorithm, well-trained simu-
lation results of the normal condition and a number of 
prescribed abnormal system conditions can be at-
tained. The process of regression diagnostics is to 
compare a set of measured system signals with the 
simulation results database for various prescribed 
running conditions to ascertain the measured signals 
pertaining to or close to which condition of the sys-
tem. The judgment criterion is based on the magni-
tude of the correlation coefficient or network mean 
square error. When the correlation coefficient result-
ing from the post linear regression analysis for BPN 
or RBF is at maximum, then the neural network cor-
responding to the running condition of this maximum 
correlation coefficient can be identified for diagnosis 
purposes. However, when the mean square error for 
the network ADALINE is at minimum, then the neu-
ral network corresponding to the running condition of 
this minimum mean square error can likewise be 
identified for diagnosis. 

To integrate all the analyses and training processes 
of the neural network the diagnosis flow chart for 
mechanical systems in this study is planned as shown 
in Fig. 4. 

 
2.4 Sensitivity analysis for diagnosis 

To identify the most sensitive output parameter of a 
mechanical system in the fault diagnostic process, 
sensitivity analysis can be carried out by means of 
SNR (Piche, 1995) of the system response signal, y  
and given as: [16] 
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σ
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  (11) 

 
where 22

yy , ∆σσ  are the variances of y  and y∆  
respectively, and y∆  represents the variation of sig-
nal y . 

3. Diagnosis experiments and discussion 

3.1 Experimental set-up of pumping system 

The experimental set-up of a motor-driven circulat-
ing pumping system is arranged as shown in Fig. 5. 
Such an arrangement encompasses a 3-phase 220 volt 
AC induction motor which drives a centrifugal pump 
and a set of water circulation piping system. The in-
put/output pipe diameter is 2.5/1.5 inches. Twelve 
sensors and seven fault signal generators were 
adopted to constitute this mechanical system. The 
sensors are “power factor” (PF), “voltage”, “current”, 
“watt”, “rpm” for motor site, “vacuum”, “pressure”, 
“flow rate” for pump site, and “temperature” in pump 
site and working fluid site and “vibration” measured 
in the shaft and foundation. Ten sampling conditions, 
one normal and nine fault conditions, with eight sam-
pling channels were considered in this study, which 
are described as follows and summarized in Table 1. 

Normal Condition:  
Condition 1: Pumping system was operating in 

normal condition. 
Mechanical fault Conditions: Pumping system 

was operating abnormally with the following pre-
scribed mechanical fault conditions. 

Condition 2: Air leakage valve was opened 1/2 
manually. 

Condition 3: Air leakage valve was opened 1/4 
manually. 

Condition 5: Inlet valve was shut 1/2 manually. 
Condition 6: Inlet valve was shut off manually. 
Condition 8: Outlet valve was shut 1/2 manually. 
Condition 9: Outlet valve was shut 3/4 manually. 
Electrical fault Conditions: Motor-driven pump 

had the following electrical faults at the power source.  
Condition 4: Frequency of power source decayed 

rapidly. 
Condition 7: One of the three phases of AC power 

was broken. 
Condition  10: Phase sequence of AC power re-

versed manually.  
In the diagnosis experiment of the set up pumping 

system, all the signals were measured by NI 6024E 
DAQ card with Labview code and the measurement 
data were analyzed with Matlab software.  

 
3.2 Box-plot, fuzzy-logic clustering and correlation 

analysis 

The eight parameters for the diagnosis of the 



 T. M. Tsai and W. H. Wang / Journal of Mechanical Science and Technology 23 (2009) 124~135 131 
 

pumping system are power factor, voltage, current, 
power, RPM of motor, degree of vacuum, pressure at 
the pump outlet and flow rate. The relation between 
power factor ( fP ), voltage and current is defined 
by the inverse cosine function: 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×CurrentVoltage

Power
＝Pf

1-cos   (12) 

 
After 10 minutes measurement for each system 

condition except conditions 4, 7, 10, more than 8000 
system parameter data can be generated to obtain the 
box-plots, as shown in Figs. 6-7 which demonstrates 
the fuzzy-logic clustering of the system parameters 
obtained by FCM (as Eq. (2)). By Eq. (1), the results 
of the correlation coefficients matrix of the pumping 
system parameters are obtained and shown in Table 2. 

The significant level matrix of the system parame-
ters can be obtained and shown in Table 3. From Ta-
ble 3, by adopting 95% confidence interval for the 
normal distribution, all the values in the significant 
level matrix less than 0.05 will be selected as the ef-
fective system parameters. The effective input pa-
rameters, as stipulated by the significant level matrix 
as depicted in Table 3, are voltage, current and power, 
whereas the effective output parameters are degree of 
vacuum, pressure and flow rate. Since the input 
power is dependent on voltage and current, only volt-
age and current are necessarily selected as the signifi-
cant system input parameters. 

After the determination of significant system input 
and output parameters, the fuzzy-logic clustering of 
the input-to-output parameter pairs for all running 
conditions is shown in Figs. 7(a)-7(f). Combining this 
significant parameter’s clustering diagrams and the 
variation range of the box-plots for the system run-
ning conditions vs. each system parameter, the rela-
tions between system input and output parameters for 
faulty conditions can be detected as: 

1. Pumping system for air-in mechanical fault per-
formance refers to Figs. 6(a)-6(b) and Figs. 7(a)-7(b). 
• An increase of air leak resulted in a reduction of 

the load current and an increase in the degree of 
vacuum. 

• An increase in suction line clogging led to re-
duction of the load current and a raise in the de-
gree of vacuum. 

• An increase in discharge line clogging led to a 
reduced load current with a decrease of the de-
gree of vacuum. 

2. Pumping system for inlet-stuck mechanical fault 
performance refers to Fig. 6(a), 6(c) and Figs. 7(c)-
7(d) are summarized as follows:  
• Increase of air leak led to a reduction of the load 

current with a slight increase of the pressure. 
• An increase in suction line and discharge line 

clogging led to a reduction of the load current 
with a slight decrease of the pressure. 

 
3. Similarly, the pumping system for outlet-stuck 

mechanical fault performance refers to Fig. 6(a), 6(d) 
and Figs. 7(e)-7(f) are summarized as follows:. 
• Increase in the air leak led to a reduction of the 

load current with a slight slow down of flow rate. 
• Increase of the suction line clogging led to a re-

duction of the load current with no discernible 
influence on the stable flow rate. 

• Increase of the discharge line clogging resulted 
in a reduction of the load current with the flow 
rate stabilized at a slower rate. 

 
4. Comparing the electrical malfunction conditions 

4, 7 and 10 with normal condition 1, the system pa-
rameter of current as displayed in Fig. 6 (a) and Fig. 7 
(b) descended rapidly and the electricity disconnected 
under protection. No matter what the electrical mal-
function condition was, the degree of vacuum as de-
picted in Fig. 6 (b) and Fig. 7 (b) remained almost the 
same and the pressure at the outlet as shown in Fig. 6 
(c) and Fig. 7 (d) rose, but the flow rate as shown in 
Fig. 6 (d) and Fig. 7 (f) descended slightly. 

 
3.3 Network architecture and diagnostic 

Through the correlation analyses of the input and 
output parameter measurements, the input and output 
neuron vectors for BPN and RBF are of dimensions 2
×1 (voltage and current) and 3×1 (degree of vac-
uum, pressure and flow-rate), respectively. The num-
ber of neurons of the hidden layer for FBPN is set to 
be 120 and 100 for CFBPN. For the RBF, the number 
of neurons in the hidden layer is increasing gradually 
up to the number of input measurements for each 
prescribed running condition. As shown in Figs. 8-9, 
the resolution of the clustering image of the measured 
data pairs in the state space of the pumping system 
input to ADALINE neural network is 1000×1000. 
The dimension of the output neuron vector of 
ADALINE is also 3×1. Such clustering images en-
compass the pairs for the degree of vacuum vs.  
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Table 1. Description of experimental conditions and channel 
label. 
 

Sampling interval : 0.1, 0.08 & 0.01 second 
Channel ID & label 

1: Power factor (PF) 2: Voltage (input) 
3: Current (input) 4: Power 
5: RPM 6: Vacuum (output) 
7: Pressure (output) 8: Flow rate (output) 

 
Sampling conditions 

1: Normal condition 6: Inlet-stuck 3/3 
2: Air-in 1/2 7: Open-phase 
3: Air-in 1/4 8: Outlet-stuck 1/2 
4: Frequency decay 9: Outlet-stuck 3/4 
5: Inlet-stuck 1/2 10: Reverse-phase 

pressure, pressure vs. flow rate and degree of vacuum 
vs. flow rate etc.; each pair has 10 running conditions, 
resulting in a total of 30 diagrams. These constitute 
the diagnosis database of the system. Parts of the 
measured data pairs are shown in Figs. 8-9, in which 
only the normal condition and air-in 1/2 condition are 
exhibited. 

Part of the post linear regression coefficients analy-
sis results for FBPN, CFBPN and RBF are listed in 
Table 4-6. Table 7 is part of the least mean square 
error results of the ADALINE network error. In these 
tables, the maximum post regression coefficients by 
BPN and RBF and the least mean square errors by 

 
Table 2. Correlation coefficients matrix of pumping system parameters. 
 

Input 
 Output PF Voltage Current Power RPM Vacuum Pressure Flow rate 

PF 1.0000        
Voltage -0.0006 1.0000       
Current -0.0312 0.1481 1.0000      
Power -0.0323 0.1309 0.5767 1.0000     
RPM 0.0047 -0.0198 -0.0194 -0.0158 1.0000    

Vacuum -0.0195 -0.0471 -0.1813 -0.1517 -0.0454 1.0000   
Pressure -0.0026 -0.0211 -0.2183 -0.2058 0.0340 -0.1841 1.0000  
Flow rate -0.0073 0.0337 0.1764 0.1605 -0.0292 0.0206 -0.0778 1.0000 

 
Table 3. Significant level matrix of pumping system parameters. 
 

Input 
 Output PF Voltage Current Power RPM Vacuum Pressure Flow rate 

PF 1.0000    
Voltage 0.9591 1.0000   
Current 0.0080 0.0000 1.0000   
Power 0.0061 0.0000 0.0000 1.0000   
RPM 0.6873 0.0931 0.0993 0.1791 1.0000   

Vacuum 0.0978 0.0001 0.0000 0.0000 0.0001 1.0000   
Pressure 0.8247 0.0734 0.0000 0.0000 0.0039 0.0000 1.0000  
Flow rate 0.5339 0.0042 0.0000 0.0000 0.0130 0.0798 0.0000 1.0000 

 
Table 4. Post regression coefficients of system output for various condition by FBPN. 
 

Normal FBPN Air in 1/2 FBPN Air in 1/4 FBPN Running condition 
V. P. F/R. V. P. F/R. V. P. F/R. 

1: Normal Condition 0.8852 0.9796 0.9412 0.5199 0.8917 0.0774 0.5441 0.8016 0.8221 
2: Air-in 1/2 -0.3327 0.8322 -0.1762 0.9181 0.9592 0.8635 0.5121 0.3633 0.1856 
3: Air-in 1/4 0.4575 0.7065 0.3411 0.5553 0.8894 0.0590 0.9291 0.9656 0.9585 
4: Frequency decay 0.4156 0.7503 -0.1535 -0.8811 -0.2345 -0.8937 -0.5969 0.6969 -0.1538 
5: Inlet-stuck 1/2 0.3912 0.5935 0.2664 0.4362 0.7138 0.0791 0.3108 0.6202 0.7478 
6: Inlet-stuck 3/3 0.0284 0.5224 -0.4499 0.2145 0.4110 -0.0218 0.2407 -0.1494 0.0329 
7: Open-phase 0.5072 0.2976 0.2334 -0.6638 -0.4327 -0.9268 0.1234 0.7392 0.0800 
8: outlet-stuck 1/2 0.2476 0.8342 0.3584 0.6225 0.7857 0.4286 0.5862 0.5606 0.5652 
9: outlet-stuck 3/4 0.4679 0.8539 0.5890 0.5944 0.8693 0.1878 0.7542 0.7487 0.7837 
10: Reverse-phase 0.6983 0.7263 0.3368 -0.7009 -0.3593 -0.8119 -0.4492 0.4855 -0.1014 

where V is degree of vacuum, P is pressure and F/R is flow rate 
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ADALINE printed in gray background coincide with 
the neural network model, and can be used to charac-
terize the system behavior and performance. So far, 
we have established 40 neural networks for the obvi-
ous diagnosis algorithm of the 10 system conditions. 
Corresponding to Tables 4-7, the regression diagnos-
tic results can also be demonstrated by bar-charts (not 
shown). 

 
3.4  Sensitivity analysis of output parameters 

From the results of the sensitivity analysis of the 
output parameters, as listed in Table 8, it can be seen 
that for all ten system running conditions “pressure” 
is revealed to be the most significant parameter. Thus, 
it is most sensitive to observe the variation of pressure 
in the diagnosis process for the pumping system. 
 

Table 5. Post regression coefficients of system output for various condition by CFBPN. 
 

Normal CFBPN Air in 1/2 CFBPN Air in 1/4 CFBPN Running condition 
V. P. F/R. V. P. F/R. V. P. F/R.

1: Normal Condition 0.8951 0.9783 0.9349 0.5023 0.8343 0.5485 0.6208 0.8423 0.7410
2: Air-in 1/2 0.2970 0.6689 -0.2594 0.9151 0.9585 0.8662 0.3171 0.6797 0.5774
3: Air-in 1/4 0.4638 0.7259 -0.0236 0.6102 0.7838 0.6226 0.9163 0.9615 0.9655
4: Frequency decay -0.1533 0.4288 0.4766 -0.5517 0.8650 -0.5728 -0.3652 0.5883 -0.6641
5: Inlet-stuck 1/2 0.2918 0.5604 -0.0983 0.5620 0.5444 0.5123 0.2375 0.6726 0.6053
6: Inlet-stuck 3/3 0.4557 0.3997 0.2476 0.3614 0.2773 0.1718 0.1941 0.5086 0.6110
7: Open-phase 0.2152 0.4484 0.0552 -0.0692 0.4857 -0.5309 -0.1257 0.6293 -0.4079
8: outlet-stuck 1/2 0.4794 0.6709 -0.4543 0.4485 0.7259 0.2906 -0.1469 0.4459 0.5495
9: outlet-stuck 3/4 0.7038 0.8669 0.7486 0.5574 0.7946 0.6275 0.7472 0.7881 0.7204
10: Reverse-phase 0.5673 0.8446 -0.4997 -0.2424 0.7478 -0.6113 -0.7087 0.6870 -0.5832

where V is degree of vacuum, P is pressure and F/R is flow rate 
 
Table 6. Post regression coefficients of system output for various condition by RBF. 
 

Normal RBF NN Air in 1/2 RBF NN Air in 1/4 RBF NN Running condition 
V. P. F/R. V. P. F/R. V. P. F/R. 

1: Normal Condition 0.8168 0.9711 0.8966 0.6427 0.6191 0.6454 -0.3929 -0.4229 -0.4322 
2: Air-in 1/2 0.3447 -0.0253 0.2392 0.8834 0.9483 0.8270 -0.5298 -0.4202 -0.3925 
3: Air-in 1/4 -0.2877 -0.3528 -0.3187 0.5377 0.6399 0.5291 0.8838 0.9571 0.9410 
4: Frequency decay 0.0125 -0.4281 -0.4329 0.7831 0.5305 0.5504 -0.0202 -0.3029 -0.2915 
5: Inlet-stuck 1/2 -0.2501 -0.4187 -0.4622 0.4596 0.4485 0.4992 0.3054 0.3757 0.3662 
6: Inlet-stuck 3/3 -0.0453 0.0714 -0.0869 0.1747 -0.4281 0.2064 -0.0299 -0.5190 -0.0787 
7: Open-phase -0.2010 0.0889 0.2692 0.4949 0.5369 0.5072 -0.4122 -0.4386 -0.4125 
8: outlet-stuck 1/2 -0.3202 -0.3774 -0.3272 0.4040 0.4532 0.3692 0.2484 0.2973 0.2197 
9: outlet-stuck 3/4 -0.4015 -0.6022 -0.5432 0.5756 0.3615 0.3617 0.2826 0.1836 0.2732 
10: Reverse-phase 0.5026 -0.0022 0.2481 0.0586 0.3663 0.3700 -0.7802 -0.7707 -0.8113 

where V is degree of vacuum, P is pressure and F/R is flow rate 
 
Table 7: Least mean square error of ADALINE network error after100 training epochs 
 

Condition 1 (Normal neural network) Condition 2 (Air in 1/2 neural network) Running condition 
V. vs. P. P. vs. F/R. V. vs. F/R. V. vs. P. P. vs. F/R. V. vs. F/R. 

1: Normal Condition 5.50845E-05 4.61804E-05 4.47682E-05 3.17029E-04 2.30082E-04 2.39732E-04 
2: Air-in 1/2 3.49244E-04 1.82677E-04 2.40101E-04 5.46580E-05 4.96625E-05 4.52595E-05 
3: Air-in 1/4 2.74660E-04 1.46006E-04 2.10551E-04 3.16370E-04 2.36347E-04 2.39076E-04 
4: Frequency decay 3.30136E-04 1.57081E-04 2.23959E-04 3.13894E-04 2.36534E-04 2.38730E-04 
5: Inlet-stuck 1/2 3.11592E-04 1.98533E-04 2.17306E-04 2.95390E-04 2.37463E-04 2.24792E-04 
6: Inlet-stuck 3/3 3.50933E-04 1.99356E-04 2.42755E-04 1.80729E-04 2.38344E-04 1.72446E-04 
7: Open-phase 3.52434E-04 1.96176E-04 2.42730E-04 3.13963E-04 2.36551E-04 2.39157E-04 
8: outlet-stuck 1/2 3.44338E-04 1.71948E-04 2.37672E-04 3.21007E-04 2.19886E-04 2.43756E-04 
9: outlet-stuck 3/4 3.48293E-04 1.95995E-04 2.39632E-04 3.19909E-04 2.36701E-04 2.41775E-04 
10: Reverse-phase 3.52622E-04 2.00236E-04 2.42909E-04 3.24479E-04 2.38655E-04 2.45285E-04 
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4. Conclusion 

From the work and the results of the study, we can 
conclude that the analytical techniques of BPN, RBF, 
and ADALINE can be used to diagnose the mechani-
cal pumping system successfully. From the analysis, 
we may conclude that: 

The significant input/output neurons are deter-
mined to be (voltage, current)/ (degree of vacuum, 
pressure and flow-rate) by the methods of box-plot, 
fuzzy-logic clustering and correlation analysis for 
BPN and RBF. The significant data pairs are deter-
mined to be degree of vacuum vs. pressure, pressure 
vs. flow-rate and degree of vacuum vs. flow-rate used 
as input/output image neurons for ADALINE. 

The judgment indices used for the purpose of diag-
nosis are determined by the maximum post regression 
value of parameters by correlation coefficient analysis 
between the neural network simulation and measure-
ment results for both BPN and RBF. The diagnosis 
indices used by ADALINE are determined by the 
minimum values of the least mean square errors be-
tween the simulation and measurements vs. the pre-
scribed normal and abnormal running conditions re-
sults. 

Comparison of the three neural networks used in 
the mechanical pumping system, the BPN method has 
been determined to be the best in time-saving for 
learning followed by the ADALINE method and the 
RBF method by using the proposed neural network 
architectures. However, if the mechanical system 
diagnosis system is tackled off-line, the RBF method 
is suggested. Otherwise, for on-line diagnosis, the 
BPN method is recommended. 

By the results of sensitivity analysis of the signifi-
cant output parameters, the pressure variation should  

 
Table 8. Sensitivity analysis results for mechanical output 
parameters in dB. 
 

Parameter
Condition 

degree of 
Vacuum Pressure Flow rate 

1: Normal Condition 6.0425 24.3763 12.2535 
2: Air-in 1/2 11.0136 19.0192 6.7047 
3: Air-in 1/4 11.0574 20.7493 17.7716 
4: Frequency decay 71.0977 112.4026 91.5720 
5: Inlet-stuck 1/2 4.9193 9.4882 11.3060 
6: Inlet-stuck 3/3 5.8676 15.9225 9.7724 
7: Open-phase 111.0220 121.5857 79.8474 
8: outlet-stuck 1/2 14.1708 15.0860 13.8936 
9: outlet-stuck 3/4 13.8649 20.3165 10.8974 
10: Reverse-phase 201.8467 229.5293 123.9181 

be surveyed first for the purpose of diagnosing the 
performance of the mechanical pumping system. It is 
obvious that if the pump system is situated in electri-
cal fault conditions, the SNR of the pressure signal 
can be higher than 100 dB. 
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